42^2+18^2=x^2

Simple and best practice solution for 42^2+18^2=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 42^2+18^2=x^2 equation:



42^2+18^2=x^2
We move all terms to the left:
42^2+18^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+2088=0
a = -1; b = 0; c = +2088;
Δ = b2-4ac
Δ = 02-4·(-1)·2088
Δ = 8352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8352}=\sqrt{144*58}=\sqrt{144}*\sqrt{58}=12\sqrt{58}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{58}}{2*-1}=\frac{0-12\sqrt{58}}{-2} =-\frac{12\sqrt{58}}{-2} =-\frac{6\sqrt{58}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{58}}{2*-1}=\frac{0+12\sqrt{58}}{-2} =\frac{12\sqrt{58}}{-2} =\frac{6\sqrt{58}}{-1} $

See similar equations:

| x÷3+4×6=10² | | 2x^2-500x=-300 | | 6x2-33x+15=0 | | 5f-9=16 | | 5x-3(x+4)=18-x | | 898=65+d | | x/3+4.6=10⅔ | | x-2/6-x-4/8=9 | | -6x-4=16-10x | | 5+y-70=0 | | 973=11+g | | (x-2/6)-(x-4/8)=9 | | 6=j−69/3 | | 20m=70 | | -6=8f+18 | | 34x-14=14 | | x+5+2=6.3 | | -x=-19.75 | | x2+7x-18=0. | | 6=j−693 | | x+6.5=3.2 | | 2(2x-3)=3(5-x) | | (x+4)2-81=0 | | 90=2(4x+1) | | 3x=20+4 | | 14=3h+5 | | (x+8)(x+6)=0. | | 3x+x+20+32=180 | | 2(3y+4)-2y+9y+2=(-16) | | 9a-3=19 | | 9+6x-4=23 | | (5x+20)/5=x |

Equations solver categories